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Abstract: We analyze the generation of helical magnetic fields during preheating in a

model of low-scale electroweak (EW) hybrid inflation. We show how the inhomogeneities

in the Higgs field, resulting from tachyonic preheating after inflation, seed the magnetic

fields in a way analogous to that predicted by Vachaspati and Cornwall in the context of the

EW symmetry breaking. At this stage, the helical nature of the generated magnetic fields

is linked to the non-trivial winding of the Higgs-field. We analyze non-perturbatively the

evolution of these helical seeds through the highly non-linear stages of symmetry breaking

(SB) and beyond. Electroweak SB occurs via the nucleation and growth of Higgs bubbles

which squeeze the magnetic fields into string-like structures. The W -boson charge density

clusters in lumps around the magnetic strings. After symmetry breaking, a detailed analysis

of the magnetic field Fourier spectrum shows two well differentiated components: a UV

radiation tail at a temperature T ∼ 0.23m
H
, slowly growing with time, and an IR peak

associated to the helical magnetic fields, which seems to follow inverse cascade. The system

enters a regime in which we observe that both the amplitude (ρB/ρEW ∼ 10−2) and the

correlation length of the magnetic field grow linearly with time. During this stage of

evolution we also observe a power-law growth in the helical susceptibility. These properties

support the possibility that our scenario could provide the seeds eventually evolving into

the microgauss fields observed today in galaxies and clusters of galaxies.
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1. Introduction

The origin of magnetic fields (MF) is one of the remaining mysteries in relativistic astro-

physics and cosmology (for reviews see the list of references [1]–[18]). Magnetic fields play

an important role in the evolution of the primordial plasma in the early universe (possibly

also in cosmic phase transitions), in the propagation of cosmic rays in our galaxy, as well

as in clusters of galaxies. They may influence galaxy formation and large scale structures,

and they may generate a stochastic background of gravitational waves. The connection be-

tween magnetic fields and gravitational waves is particularly intriguing. Since MF induce

an anisotropic stress tensor, this can act as a source of gravitational waves (see [19]). Large

amplitude magnetic fields from primordial turbulence could induce a significant stochastic

background of gravitational waves which could be seen by LIGO or BBO, with a specific

spectral signature.

Magnetic fields have been found on the scale of galaxies and clusters of galaxies with

a magnitude of order the microgauss. There is even some evidence of their existence on

the scale of superclusters (for a review on observational results see [20]). Summarizing the

measured MF values on all scales L:

• galaxies: B ≃ 50 µG at L < 1 kpc; B ≃ 5 − 10 µG at L ∼ 10 kpc.

• clusters: B ≃ 1 µG at L ∼ 1 Mpc.

• superclusters: B < 10−2 − 10−3 µG at L ∼ 1 − 50 Mpc.

• CMB: B < 10−3 − 10−5 µG at L > 100 Mpc.

• Primordial nucleosynthesis: B < 1011 G at T = 109 K.

where the last bound (BBN) comes from the modification that such a background would

imply for the expansion rate of the universe at primordial nucleosynthesis, which would

change the observed Helium abundance.

The main difficulty in understanding the origin of magnetic fields is not in their ampli-

tude (i.e. magnitude) but in its correlation scale, from galaxies to clusters to superclusters.

The microgauss order of magnitude of present galactic MF could be explained easily from

an amplification via a dynamo mechanism initiated by a tiny seed, with B ∼ 10−23−10−30

G (when taking into account gravitational collapse in a flat ΛCDM model). The explana-

tion of the scale of the magnetic seed in this case is rather straightforward. The dynamo

mechanism is an exponential mechanism which makes the MF amplitude increase a factor

e at every turn of the object (typically a galaxy) with free charge and thus large electri-

cal conductivity. Since the typical galaxy has made around 30 turns in their lifetime, the

growth factor is e30 = 1013. Since we observe microgauss, we just need a seed Bseed ∼ 10−19

G over a scale of 30 kpc. This is the MF after gravitational collapse. Typically a galaxy

forms by gravitational collapse of a lump of matter the size of about a Mpc with density

of order the critical density, and ends collapsing to a size of order 30 kpc and density
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ρgal ∼ 106ρc. By flux conservation, the gravitational collapse amplification gives an extra

factor

(ρgal/ρc)
2/3 ∼ 104 ,

which gives a seed Bseed ∼ 10−23 G over a scale of 1 Mpc. This calculation was done

assuming matter domination. If we consider a ΛCDM universe, then gravitational collapse

amplification is greater and the seed can start with Bseed ∼ 10−30 G over a scale of 1 Mpc.

This is the minimal value required for a typical galaxy.

The microgauss amplitude at cluster scales is more difficult to explain via a dynamo

mechanism because it did not have as much time since its formation to build up from such

a tiny seed, and the order of fractions of microgauss amplitude at supercluster scales is

simply impossible to explain by dynamo mechanisms or gravitational collapse. In any case,

even in the presence of dynamo amplification, an initial magnetic seed is required which

is not provided by the dynamo mechanism itself. Theoretical models trying to account for

the origin of the primordial seeds can be classified in two groups:

• Astrophysical: Biermann battery in intergalactic shocks, stellar magnetic winds (like

in our Sun), supernova explosions, galactic outflows in the inter-galactic medium

(IGM), quasar outflows of magnetized plasma into the intra-cluster medium (ICM),

see refs. [9, 12, 16], and a recently suggested proposal in conjunction with high energy

cosmic rays [21].

• Cosmological: Early universe phase transitions [22]–[34], magnetic helicity together

with the baryon asymmetry of the universe (BAU) at the electroweak (EW) transi-

tion [35]–[42], via hypercharge and hypermagnetic field generation before EW tran-

sition [43, 44], from second order cosmological perturbations from inflation [45]–[65],

from preheating after inflation [66]–[69], etc.

Moreover, MF have also been observed in quasars at redshift z ∼ 2, again with a

magnitude of order the microgauss. This indicates not only ubiquity but also invariance

(within an order of magnitude) with time. Such features cry for a cosmological, rather

than astrophysical, origin of MF. Could it be that some yet unknown mechanism directly

generated microgauss MF on all scales? The first reaction is to ask about the dynamo

mechanism in galaxies, would it not amplify this microgauss MF to even larger amplitudes,

as can be seen in neutron stars, and even our Sun? The surprising answer is no, because

a few microgauss is the maximum magnetic field possible on galactic scales, due to the

existence of relativistic cosmic rays and ionized gas moving at large speeds. If one computes

the total energy density in cosmic rays (integrating the measured flux spectrum over all

energies), one finds
1

2
ρCRv2/c2 = 0.5 eV/cm3 ,

and a similar number for the energy density in the ionized gas moving with rotation speeds

of order 200 km/s,
1

2
ρgasv

2/c2 = 0.3 eV/cm3 .
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If we assume that magnetic fields are in equilibrium, due to their interaction with the

cosmic rays and the gas, and furthermore we suppose equipartition, then their energy

density (using 1 G = 1.95 × 10−20 GeV2) becomes

ρB = B2/(8π) = 0.5 eV/cm3 = (5 µG)2/(8π) ,

which corresponds to a few microgauss, in surprising agreement with observations. Some

people suggest that this argument may also explain the cluster MF value.

The ubiquity of MF with similar amplitude on all scales reminds us of the issue of

Helium abundance in the universe. Early measurements in the fourties indicated that

the Helium mass fraction to Hydrogen in the Universe was about a quarter, very nearly

everywhere. This observation was correctly interpreted by Gamow and collaborators as

indicating a primordial origin. Simple order of magnitude computation of nuclear interac-

tion rates (mainly those of deuterium, a necessary step in the reactions from H to He) and

comparison with the rate of expansion in the early universe at temperatures of order the

nuclear transitions (i.e. MeV), together with the then largely unknown neutron decay rate,

suggested that the present abundance of Helium could have been produced from Hydrogen

in the early universe and thus be present everywhere. The other light elements seemed

to require further synthesis in stars and thus depended on location, but the Helium was

ubiquitous because it was there from the very beginning.

Something similar may have happened with magnetic fields, if they were generated

in the early universe by some unknown mechanism and then redshifted until today. The

question is what is the typical energy density which today gives the order microgauss fields?

These fields (if homogeneous) redshift as radiation, i.e. ρB(a) = ρB(today)(a0/a)4. Like

with Helium, we have to ask what was the energy scale of interactions responsible for the

generation of primordial magnetic fields? Photons are massless so in principle any scale, as

long as there are charged particles, is sufficient to generate magnetic fields, and this is the

reason why there is still so much debate as to their origin. However, was the universe always

permeated with electromagnetic waves? The answer is no, the electromagnetic interaction

as we know it came into being at a very precise time, when the electroweak (EW) force

broke into the weak interactions plus electromagnetism. Before we could not talk about

photons and magnetic fields. This occurred when the typical energy (or temperature) in

the universe was around TEW ∼ 100 GeV. If we construct an energy density with this scale

we get ρEW ∼ 108 GeV4. At that time the universe was (or became) radiation dominated.

If we now redshift this MF energy density until today (T0 = 2.725 K) we get

ρB(today) = (T0/TEW)4ρEW ∼ 3.04 × 10−53 GeV4 = 0.4 eV/cm3

which is precisely the order of magnitude of the present MF energy density.1 This would

be enough to explain the cluster and supercluster values, and would perhaps require a

mild dynamo mechanism to grow to galactic values (if the fraction f ≪ 1). The question

1We could be even more conservative and suppose that the fraction of magnetic field energy density to

radiation at the time of the EW transition was given by f = ρB/ρrad < 1. In this case, the present MF

magnitude would be B0 ∼ 5 f1/2 µG.
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is whether this is just a coincidence or it is hinting directly at its origin.2 While other

mechanisms require a seed with an arbitrary scale (typically B ∼ 10−23 G, so that today

we observe microgauss MF on galactic scales via the dynamo mechanism), there is no

physical reason behind this scale. On the other hand, the EW scale is a natural scale for

the generation of magnetic fields since it is the scale at which electromagnetism arises for

the first time as a fundamental interaction.

Whether this is sufficient reason to assign the EW energy scale to the origin of magnetic

fields is another issue. In particular, it is not clear how to obtain the large correlation

length of magnetic fields observed at galactic and cluster scales. Any physical mechanism

that creates magnetic fields must be necessarily causal, but at high temperatures in the

early universe there is also a natural coherence scale given by the particle horizon. At

the electroweak scale the physical horizon is 10−10 light-seconds (∼ 3 cm), which today

corresponds to a co-moving scale of 0.3 mpc (∼ 1 AU), clearly insufficient when compared

even with the irregular (turbulent) component of the galactic magnetic field (L ∼ 100 pc),

not to mention the regular (uniform) component, which has correlations L ∼ 10 kpc. It

thus seems impossible to explain the coherent magnetic fields observed on galaxy clusters

and supercluster scales (of order 10 Mpc) with intensities of order µG to nG.

There is however a second coincidence, which makes things even more intriguing. If we

assume that the plasma after the electroweak transition is sufficiently turbulent to maintain

magnetic fields of the largest possible coherence scales via inverse cascade [29]–[34], then we

could reach cosmological scales today. Let us follow the argument. The largest coherence

scale at the electroweak transition is the physical horizon, of order 3 cm. If a strong inverse

cascade is active, then the coherence length of the magnetic fields will grow as fast as the

horizon (it cannot grow faster). This means that it grows like the scale factor squared

during the radiation dominated era. This ideal situation could only last while there is

a plasma and thus it is bound to stop acting at photon decoupling, when the universe

becomes neutral. Since then, the correlation length can only grow with the expansion of

the universe, as the scale factor. If we take this effect into account from the electroweak

scale until today we find, using the adiabatic expansion relation T ∝ a−1,

ξ0 = ξEW

(

adec

aEW

)2 a0

adec
= 3cm

(

TEW

Teq

)2 Teq

T0
∼ 6 × 1025 cm = 20 Mpc , (1.1)

where we have made the approximation that equality and decoupling occurred more or

less simultaneously (a careful computation gives only a minor correction). The surprising

thing is that this simple calculation gives precisely the order of magnitude for the largest

correlation length of cosmic MF ever observed (i.e. cluster scales). If the agreement in

the magnitude of the primordial MF seed seemed peculiar, the fact that an inverse cas-

cade could also be responsible for the observed correlation length becomes a surprising

coincidence, probably hinting at an underlying mechanism. It is therefore worthwhile ex-

ploring the conditions that could have taken place at the electroweak transition which could

give rise to a significant fraction of energy density in magnetic fields, and be responsible

2Some authors suppose that the generation occurred earlier in the form of hypermagnetic fields and was

then converted into ordinary magnetic fields at the EW scale [44].
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for a sustained period of inverse cascade until photon decoupling. It has been shown in

refs. [30]–[34] that one important ingredient is the generation of magnetic fields with a

non trivial helical component, which guarantees an optimal amplification of the magnetic

correlation length through inverse cascade. A very good account of the large number of

works investigating these issues, with a complete list of references is given in ref. [9] (see

also [27]–[44]).

In this paper we propose a scenario in which the electroweak transition takes place

at the end of a brief period of hybrid inflation.3 It has been conjectured that preheating

and early reheating in this model could provide an alternative mechanism to generate the

baryon asymmetry in the universe [73]–[79] and a way to source gravitational waves [80].

In this paper we analyze whether it could also give rise to primordial magnetic fields with

the required amplitude and correlation length. This issue has been partially addressed in

a recent letter [81]. Here we will present a complete account of the results obtained and

a detailed description of the approach employed in the analysis. Our set up provides a

specific realization of some of the proposals described above. In particular, we will see

how helical magnetic fields arise from the inhomogeneities in the spatial distribution of the

Higgs field, along the lines conjectured by Vachaspati [35, 37] and Cornwall [39] some years

ago.

The paper is organized as follows. In section 2 we describe the hybrid inflation model

that we will be using and revise, following ref. [76], how to solve the quantum evolution

of the system from the end of inflation until non-linearities start to become important.

Beyond this time, a fully non-perturbative approach is required. Fortunately, the time

evolution at this stage can be described within the classical approximation as demonstrated

in ref. [76]. Details on the methodological set up and the lattice implementation are

presented in section 3. Section 4 analyzes the mechanism leading to helical magnetic

fields following from the inhomogeneities in the Higgs field, which are seeded by the Higgs

quantum fluctuations that arise from the period of linear quantum evolution. Strings of

magnetic flux, carrying non-vanishing helicity, are clearly observed. They persist and are

even enhanced as the system progresses towards the true vacuum. We also analyze here

the structure of the plasma of W−charges which accompany the magnetic fields during

this period. The fate of these magnetic fields at later times is discussed in section 5,

where we present a detailed study of the spectrum of the magnetic field. We will show

that there is a significant helical magnetic field remnant whose amplitude and correlation

length are amplified linearly in time. In section 6 we will discuss lattice and finite volume

independence of our results, as well as the dependence of magnetic field production on

the Higgs- to W-mass ratio. Conclusions and prospects for further work are presented in

section 7. Finally, a few technical points about the lattice discretization of the classical

equations of motion, the Maxwell equations and electromagnetic radiation are described in

the appendices A, B and C. Appendix D is devoted to an analysis of the Gaussian random

fields that provide the initial Higgs field distribution.

3Note that we do not need a 60 e-fold period of inflation, just a few (∼ 5) e-folds of low scale thermal

inflation [70, 71] to cool down the universe. The amplitude of CMB temperature fluctuations would be

determined by the usual 55 e-folds of high-scale (e.g. GUT) inflation. See however ref. [72].
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2. The model

The scenario we will be considering is that of preheating after a period of hybrid inflation

which ends at the EW scale. This was first introduced in ref. [73] to provide a new

mechanism for the generation of baryon asymmetry in the Universe (BAU). It has been

extensively studied since then both in connection with BAU [73]–[79] and in relation with

the production of gravitational waves [80]. In this paper and in ref. [81] we include for

the first time the Hypercharge field in order to study the generation of electromagnetic

fields during preheating (preliminary results can be found in [82]). In this section we will

introduce the model and describe the first stages of evolution after inflation ends which

provide the initial conditions for the non-linear approach addressed in section 3.1.

The Hybrid inflation model is attained by extending the Standard Model with the

addition of a scalar field, the inflaton, singlet under the gauge group. The scalar sector

thus includes the Higgs field: Φ = 1
2 (φ0 1l + iφaτa) (τa are the Pauli matrices) and the

singlet inflaton χ which couples only to the Higgs via the scalar potential:

V(Φ, χ) = V0 +
1

2
(g2χ2 − m2) |φ|2 +

λ

4
|φ|4 +

1

2
µ2χ2 , (2.1)

where |φ|2≡2Tr Φ†Φ, µ is the inflaton mass in the false vacuum and m
H

=
√

2m≡
√

2λ v

the Higgs mass, with v=246 GeV the Higgs vacuum expectation value at the electroweak

scale. The gauge sector contains both the SU(2) and the hypercharge U(1) fields with

Ga
µν = ∂µAa

ν − ∂νAa
µ + g

W
ǫabcAb

µAc
ν (2.2)

and

FY
µν = ∂µBν − ∂νBµ, (2.3)

their respective field strengths. The covariant derivative is:

Dµ = ∂µ − i

2
gWAa

µτa −
i

2
gYBµ, (2.4)

with g
W

the SU(2) gauge coupling and g
Y

the hypercharge coupling. In this work we can

safely ignore fermionic fields since the time scales involved in the perturbative decay of the

Higgs field into fermions are much larger than the ones considered here.

With all these definitions the Lagrangian density of the model becomes:

L = −1

4
Ga

µνGµν
a − 1

4
FY

µνFµν
Y + Tr

[

(DµΦ)†DµΦ
]

+
1

2
∂µχ∂µχ − V (Φ, χ) . (2.5)

For our analysis we have fixed the W mass and the Z to W mass ratio to the ex-

perimental values [83]. We have analyzed three different values of the Higgs to W mass

ratio: m
H
/m

W
= 2

√
2λ/g

W
= 2, 3 and 4.65. The Higgs-inflaton coupling has been fixed to

g2 = 2λ as in super-symmetric models [74, 84] and we have taken the inflaton bare mass

µ = 10−5gv ≈ 0.

The extraction of the electromagnetic content of the SU(2)×U(1) fields in the La-

grangian proceeds in the usual way. Fixing the unitary gauge, Φ(x) = ρ(x) 1l, the Z-boson
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field and the electromagnetic field are extracted from appropriate orthogonal combinations

of the SU(2) and hypercharge vector potentials:

Zµ(x) = cos θW A3
µ(x) + sin θW Bµ(x) , (2.6)

Aγ
µ(x) = sin θW A3

µ(x) − cos θW Bµ(x) . (2.7)

with ϕ(x) = Φ(x)(1, 0)T the Higgs doublet. This separation can only be done unam-

biguously when the Higgs field is on the true vacuum, i.e. in the broken symmetry phase.

However even in that phase there can be points where the Higgs field vanishes and the sym-

metry is locally restored (a typical example of a configuration exhibiting such behavior is

the sphaleron). At those points there is no unique way to define the electromagnetic fields.

In fact ’t Hooft was the first to point out in ref. [85] the consequences of this ambiguity

in the Georgi-Glashow model, tying it to the appearance of non-trivial configurations like

monopoles or strings, acting as sources of magnetic fields. In ref. [35] Vachaspati pointed

out that a similar mechanism was at work in the electroweak model where the sources for

magnetic field generation are tied to the presence of non-homogeneous phases in the Higgs

field. In the following sections we will analyze in detail how this mechanism is realized

during the period of preheating after inflation.

2.1 Linear quantum evolution

Following refs. [76, 77], we will address here the first stages of evolution starting at the end

of inflation.

The period of inflation is characterized by the fact that the Higgs and inflaton fields

are displaced from the true minimum of the potential. In this case, inflation is driven by

the false vacuum energy, V0 = λv4/4. During this time the inflaton homogeneous mode,

χ0 ≡ 〈χ〉, dominates the dynamics. After only about 5-10 e-folds the Universe has cooled

down and all other particle species have been diluted, remaining in the de Sitter vacuum.4

The interaction between the Higgs and inflaton fields drives the end of inflation and

triggers EW symmetry breaking. The way this proceeds is as follows. Close to the time

when inflation ends, denoted by tc, the time evolution of the inflaton zero mode can be

approximated by:

χ0(t) = χc(1 − V m(t − tc)) (2.8)

where χc = χ0(tc) ≡ m/g. Here V denotes the inflaton dimensionless velocity, defined

through this equation and fixed to V = 0.024 in our analysis [76]. The variation of χ0(t)

induces, via the Higgs-inflaton coupling, a time dependence of the effective Higgs mass

parameter, m2
φ = −M3(t − tc) ≡ −2V m3(t − tc), which changes from positive to negative,

triggering electroweak symmetry breaking. Accordingly, the time when inflation ends, tc,

is characterized as the critical point where the Higgs field becomes massless.

As described in detail in refs. [76, 77], it is possible to solve exactly the quantum

evolution of the system around tc if non-linearities in the Higgs field and the interaction

4For electroweak-scale inflation and the range of momenta we will be considering, de Sitter vacuum is

indistinguishable from the Minkowski vacuum.
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with the gauge fields are neglected. As we will see below, this is a reasonable assumption

at this stage. In this approximation the Higgs field is effectively described as a free scalar

field with a time dependent mass mφ(t). Its quantum evolution can be solved in terms of

Airy functions [76]. After tc, low momentum modes of the Higgs field grow exponentially

in a process known as “tachyonic preheating” [74]. Due to the tachyonic growth, low

momentum Higgs field modes acquire large occupation numbers and, soon after tc, they

evolve as classical modes. This is a very fast process so that all other modes can be taken

to remain in the quantum vacuum (ground) state, justifying thus the linear approximation.

These modes will be later populated through the interaction with the Higgs field tachyonic

modes. Once non-linearities start to become relevant the approximation ceases to be valid

and a full non-linear treatment is required. Our strategy for dealing with the later stages

of evolution will be presented in the next section.

3. Methodological set up

Beyond the quantum linear evolution described in the previous section we have to deal

with the non-linear dynamics of the Higgs field and its coupling to the gauge fields. Our

approach is based upon the classical approximation (details can be found in [76, 77] - see

also [79]). The validity of this approximation relies on the fast growth of tachyonic modes

as explained previously. In what follows we will describe several aspects of our procedure.

3.1 Initial conditions for the non-linear evolution

As mentioned previously the initial stages after the end of inflation (t = tc) lead to a

rapid growth of the tachyonic modes which tend to behave classically. The correlation

functions of the Higgs field resulting from the initial quantum evolution can be computed.

Our approach is to use these results as initial conditions for the classical evolution of the

system. The quantum fluctuations translate into stochastic initial conditions for the Higgs

field, whose correlations are designed to match the Weyl-ordered quantum expectation

values. The matching of the two methods is done at an initial time t = ti > tc that must

be large enough for classical behaviour to set in and small enough to make the non-linear

terms small. This leaves a window of possible values of ti. We tested the robustness

of the results with respect to changes in ti within these limits, giving confidence on the

self-consistency of our approach.

Given the linear character of the initial quantum evolution, the Higgs field momentum

modes φα
k , at t = ti behave as Gaussian random variables of zero-mean following a Rayleigh

distribution:

exp
(

− |φα
k |2

(σα
k )2

) d|φα
k |2

(σα
k )2

dθα
k

2π
, (3.1)

where θα
k is the phase of the complex random variable φα

k . The dispersion of the modulus

is expressed in terms of the power spectrum P (k, ti) = k3(σα
k )2, and can be computed

analytically in terms of Airy functions [76]. For practical purposes it is better to work with

a simple functional fit to the power spectrum (eq. (D.1)). Notice that we have introduced

– 9 –
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a momentum cut-off, removing modes which have not become tachyonic (classical). As

explained in ref. [76], this is compensated by a renormalization of the parameters.

The study of the properties of this 4-component Gaussian random field is collected

in Appendix D. Its features depend on several parameters: the Higgs mass, the initial

inflaton velocity V , the momentum cut-off and the choice of initial time ti. The first two

appear combined in a new scale M = (2V )1/3m characteristic of the initial linear evolution.

The main conclusion drawn in appendix D, is that to a large extent all these parameter

dependencies translate into setting two main scales: a spatial length scale, ξ0, and the

Higgs dispersion, σ, which determines the magnitude of the Higgs field.

More specifically, in appendix D we study the distribution of local maxima in |φ(x)|.
These “peaks” are the seeds that will later grow with time and develop into bubbles which

start expanding and colliding among themselves once the Higgs fields enters the non-

linear regime characteristic of symmetry breaking. This process was described in detail in

ref. [76]. Note that the multicomponent character of the Higgs field affects the results but,

more importantly, it gives rise to new observables, some of which are intimately connected

to the physical phenomena which are the main goal of this paper. This will be described

in the next section.

To complete the description of the initial conditions, we mention that, similarly to the

high-momentum modes of the Higgs field, all other non-tachyonic modes are set to zero.

These include the non-homogeneous modes of the inflaton and the vector potentials of the

SU(2) and hypercharge gauge fields. The initial time-derivatives of these quantities are

also set to zero except for the gauge fields which have to be chosen such that the Gauss

constraint is satisfied as an initial condition. The dynamic equations guarantee that the

constraint will continue to hold at later times. The aforementioned robustness of the results

to the choice of initial time ti implies that our physical conclusions do not depend on minor

modifications of these initial conditions.

3.2 Numerical procedure

In order to study the non-linear evolution of the system with our stochastic initial conditions

we have made use of the lattice approach. This has the advantage that classical equations

of motion are discretized preserving full gauge invariance of the system. Generally speaking

the procedure is standard. Details on the lattice Lagrangian and the lattice form of the

equations of motion are presented in appendix A. At early times the errors associated to

discretization are very small due to the cut-off form of the initial spectrum. This shows up

in the very mild dependence of the results on the spatial a and temporal at lattice spacings.

This contrasts with other situations in which lattice techniques have been used. As time

evolves higher momenta of the fields grow and start to play a role, eventually leading to

a breakdown of the approximation. We have explicitly analysed that this does not occur

for the range of times covered in this paper. A different approach needs to be followed if

one wishes to reach times in which full thermalisation has been reached. Notice, however,

that this goal also demands the introduction of fermionic degrees of freedom which can be

safely ignored in our time span. Our present results can be used as initial conditions for

the study of the late time behaviour of the system.
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Ns ma mat pmin/m

64 0.65 1/40 0.150

80 0.52 1/40 0.150

100 0.42 1/40 0.150

100 0.52 1/40 0.125

100 0.65 1/40 0.100

120 0.65 1/40 0.080

Table 1: List of lattice parameters: a and at are respectively the spatial and temporal lattice

spacings, Ns is the number of lattice points and pmin = 2π/(Nsa) is the minimum momentum.

The Ns = 120 lattice has only been used for the study of the initial configuration. The number

of different configurations of each lattice ranges from 80 to 200, depending of the lattice and the

choice of parameters.

Another approximation needed for the numerical procedure is to put the system in a

box with periodic boundary conditions. The physical volume, V = L3 is given in terms

of the minimum momentum: L = 2π/pmin. The latter has to be chosen judiciously to lie

well within the tachyonic band of the Higgs field. The dependencies of the results can be

monitored by using different values for the parameters of the simulation. In table 1 we

enumerate the different lattice sizes, spacings and physical volumes that we have used.

Due to its relevance for the goals of our paper, we will now explain in detail how the

electromagnetic and Z fields are defined in our lattice approach. This can only be done

unambiguously when the Higgs field is in the true vacuum, i.e. in the broken symmetry

phase. One can compute, in a gauge invariant way, the field associated to the Z-boson

potential as:

Zµ(m) =
−iTr

[

n̂(DµΦ(m))Φ†(m)
]

|φ(m)||φ(m + µ)| (3.2)

≡ −iTr

[

τ3
Φ†(m)

|φ(m)|Uµ(m)
Φ(m + µ)

|φ(m + µ)|Bµ(m)

]

a→0−→ aµgZZµ(x) , (3.3)

where we have introduced the adjoint unit vector n̂ = naτa, with components:

na(x) =
ϕ†(x)τaϕ(x)

|ϕ(x)|2 , (3.4)

with ϕ(x) = Φ(x)(1, 0)T the Higgs doublet. The Z boson coupling is denoted by gZ and

ai = a, a0 = at. Dµ is the lattice covariant derivative operator defined in eq. (A.6) of

appendix A. Uµ(n) and Bµ(n) are, respectively, the SU(2) and hypercharge link fields

introduced in appendix A. Notice that continuum quantities are defined with calligraphic

letters to distinguish them from the lattice quantities. Our definition of the Z boson

potential corresponds to the standard one in the unitary gauge.

We define the Z boson and hypercharge field strengths through the clover averages5

FZ
µν(m)=〈∆µZν(m)−∆νZµ(m)〉clov a→0−→ aµaνgZFZ

µν(x) + O(a4) (3.5)

5Corrections to the continuum approach of the time-space clover averages are order O(a0a
2).
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Figure 1: (Left) Locus of points where the value of the Higgs field norm is below 0.03 v . (Right)

Locus of points where twice the magnetic energy density (| ~B|2) is above 0.03 m4. Data correspond

to mt = 5 and m
H

= 2m
W

.

and

FY
µν(m)=〈∆µθν(m)−∆νθµ(m)〉clov a→0−→ aµaνg

Y
FY

µν(x) + O(a4) , (3.6)

where Bµ(m) ≡ exp(iθµ(m)τ3/2) is the hypercharge link, ∆µ is the lattice derivative oper-

ator introduced in eq. (A.8) and 〈O〉clov denotes the clover averages defined in eqs. (B.2)–

(B.3). In terms of them we can compute the lattice electromagnetic field strength as:

F γ
µν(n) = sin2(θW )FZ

µν(n) − FY
µν(n)

a→0−→ aµaνeFγ
µν(x) + O(a4) , (3.7)

where Fγ
µν is the corresponding continuum electromagnetic field strength. This provides

a lattice gauge invariant definition of the electromagnetic field which is equivalent to the

usual definition in the unitary gauge.

4. The mechanism underlying magnetic field generation

In this section we study the production of magnetic fields during the first stages of our EW

preheating scenario. This analysis is performed in two steps. The first is to investigate the

presence, size and structure of the magnetic fields generated by our Gaussian random field

initial distribution. This complements the results presented in appendix D. Then we will

track the evolution of these magnetic fields through the highly non-linear stages associated

to EW symmetry breaking. This is a crucial period where there are no viable alternatives

to our methodological approach.

4.1 Initial Magnetic fields

A close look at our expression of the photon field reveals that Abelian electromagnetic

fields are present in the first stages of the evolution. The discussion on how this comes

about follows a line of argument very similar to that developed by Vachaspati in ref. [35].

The tachyonic preheating phase leads to a multicomponent Gaussian Higgs field. The

SU(2) and hypercharge gauge fields remain very small. This is incorporated into our initial

conditions by setting the hypercharge and SU(2) magnetic-like fields to zero and fixing
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Figure 2: Histogram of Higgs winding number for the initial configuration mt = 5 for pmin =

0.15 m.

the corresponding electric fields in order to satisfy the Gauss constraint. We work in the

Aµ = 0 gauge, which on the lattice corresponds to Uµ(t = ti) = Bµ(t = ti) = 1l. Projecting

onto the Z and electromagnetic fields we obtain:

Zµ(x) =
i

gz
Tr
[

n̂ Ω(x)∂µΩ†(x)
]

(4.1)

FZ
µν(n) =

i

gz
Tr
[

n̂
(

∂νΩ(x)∂µΩ†(x) − ∂µΩ(x)∂νΩ
†(x)

) ]

Fγ
µν(x) = tan θWFZ

µν(x) ≡ i sin θW

gW
Tr
[

n̂
(

∂νΩ(x)∂µΩ†(x) − ∂µΩ(x)∂νΩ
†(x)

) ]

,

expressed in terms of the SU(2) matrix:

Ω(x) =
Φ(x)

|φ(x)| . (4.2)

It becomes clear that electromagnetic fields are sourced by the presence of inhomogeneities

in the Higgs field orientation. This is one of the essential ingredients in Vachaspati’s

proposal for magnetogenesis.

The size and spatial distribution of this initial electromagnetic and Z fields can be

obtained from the multicomponent Gaussian random field. In appendix D we displayed

the histogram of magnetic field values. Here we will focus on another aspect which is

particularly interesting for the later evolution. This is the spatial distribution of points

where the magnetic field intensity is larger. To investigate this, we show in figure 1 a 3-

dimensional plot displaying the locus of points where the magnetic energy density is above

0.03 m4 for our initial configuration at mti = 5. Notice that the regions of higher magnetic

energy density exhibit a string-like geometry. Indeed, this spatial distribution tracks the

location of regions of low Higgs field value, which are also presented in the figure. Although,

the strings seem to end at certain spatial points, this is simply a reflection of the spreading
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Figure 3: We show the time evolution of the electric (transverse ET and longitudinal EL) and

magnetic energy densities averaged over 150 configurations for m
H

= 3m
W

, ma = 0.42 and pmin =

0.15 m.

of magnetic flux lines. Our electromagnetic field satisfies the Maxwell equations without

magnetic sources or sinks. According to our formulas the initial magnetic-like component

of the Z-boson field strength is directly proportional to the electromagnetic field and has

identical structure.

There is another important feature of magnetic fields which we have investigated. It

corresponds to whether the initial field gives rise to a sizable helicity. In a finite volume

the total magnetic helicity is defined both in configuration and in momentum space as:

H ≡
∫

d3x h(x) =

∫

d3x ~A · ~B ≡ −i

V
∑

k

~k

|~k|2
· ( ~B(~k) × ~B∗(~k)) , (4.3)

where V is the volume of space. Notice that this equality makes use of Maxwell’s condition
~∇ ~B = 0, which is ensured by our magnetic field definition (3.7). At our initial time,

by virtue of eqs. (4.1), this quantity is proportional to the winding of the Higgs field.

This is defined as the index of the map from the spatial volume to the group SU(2)=S3,

provided by the matrix Ω(x). A histogram of the winding obtained for our initial Gaussian

random field configurations is displayed in figure 2. The data are well described by a

Gaussian distribution. Since we have not included CP violating terms, the mean value of

the winding number is zero. However, we observe a non-zero dispersion from which one

can obtain a non-zero volume-independent topological susceptibility χ = 0.52 × 10−4 m3.

This translates into a corresponding non-vanishing helical magnetic susceptibility χH ≡
〈H2〉/V = 0.38(3)m3 . The Z helical susceptibility at this initial stage is χZ ≡ tan−4 θW χH .

In the next subsection we will study the evolution of this helical magnetic field during

the highly non-linear epoch of symmetry breaking. This provides a connection between

magnetic field helicity, Z-strings and the occurrence of configurations carrying non-trivial

Chern-Simons number. This result, which relates baryon number generation and magnetic
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Figure 4: Top: (Left) The location of the bubbles in the Higgs field norm (in red) with a lower

cutoff set at 0.7 v and the locus of points with twice the magnetic energy density (| ~B(~x)|2) (in blue)

higher than 0.01 m4. (Right) Locus of points where the magnetic energy density is above 0.03 m4.

Bottom: (Left) Two-dimensional contour plots of the Higgs field norm. (Right) Two-dimensional

contour plots of the magnetic energy density. Data correspond to mt = 15 and m
H

= 2m
W

.

helicity, has been proposed, although along somewhat different lines, by Cornwall [39]. The

connection has been studied recently by Copi et al. [86]. They showed that the sphaleron

decay indeed gives rise to helical magnetic fields.

At later stages, the Chern-Simons number creation processes stop, leaving behind

a remnant magnetic helicity component [37], which is preserved in a plasma with high

electrical conductivity. Thus, this could provide a signature of EW generation of primordial

magnetic fields.

4.2 Magnetic strings through symmetry breaking

We will now focus upon the evolution of the system from the initial Gaussian random field

situation until the onset of symmetry breaking. To have a global picture of the process

we show in figure 3 the time evolution of the expectation value of the Higgs field from the

initial time mti = 5 of our classical evolution. Notice the strong initial oscillations for times

smaller than mt = 20, which are then progressively damped at larger times. The figure

also displays the fraction of the total energy density carried by electromagnetic fields. We

split it into its magnetic and electric components, and for the latter we analyze separately
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Figure 5: Top: (Left) Helicity of the magnetic field. (Right) Helicity of the Z-boson field. Bottom:

(Left) Two dimensional contour plots of the helicity of the magnetic field. (Right) Two dimensional

contour plots of the helicity of the Z-boson field. Data correspond to mt = 15, for m
H

= 2m
W

.

longitudinal and transverse parts.6 We observe that between mt = 10 and mt = 15, there

is an explosive growth of the electromagnetic fields correlated with the first minimum in

the oscillation of the Higgs field expectation value. The data in the figure corresponds to

mH = 3mW , but similar behaviour is observed for the other ratios studied.

We will now present the spatial structure observed for the magnetic fields at mt =

15 after the strong oscillation region. The corresponding distribution of the Higgs field

modulus has been presented in ref. [76]. There we showed that the initial Gaussian peaks

lead to bubbles which expand and collide with neighbouring ones. This is illustrated in the

top left of figure 4 where we display a snapshot of the Higgs field norm at mt = 15. At this

time bubble shells (in red), that have grown out of the peaks in the initial Gaussian random

field, fill almost all the volume of the box. Magnetic fields (shown in blue in the figure)

appear as string-like structures localized in the region between bubbles, where the Higgs

field remains closer to the false vacuum for a longer period of time. This linkage between

magnetic strings and Higgs field minima is even more evident in the two dimensional

contour plots presented in the bottom half of figure 4.

The structures observed in the regions of maximal magnetic density are reproduced

when looking at the helical part alone. This is exemplified by the comparison of figure 5

with figure 4. The figure also shows how the correlation between magnetic and Z boson

6The technicalities involved in the lattice definition of transverse and longitudinal fields as in the defi-

nition of the W bosons charge densities and currents are discussed in appendix B.
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Figure 6: Averaged l2Hl(r0), eq. (4.4), at mt = 15. We also show the l2 asymptotic behaviour for

the m
H
/m

W
= 4.65 model. The other data corresponds to m

H
/m

W
= 2.

fields, implicit in our initial conditions, is still preserved once gauge fields and non-linearities

have started to play a role. An interesting observation can be made here concerning the

connection with baryon number generation. Analysis of the cold EW transition show

that sphaleron-like configurations, with non-trivial Chern-Simons number, are also located

between bubble shells [77]–[78]. For non-zero Weinberg angle, sphalerons look like magnetic

dipoles [87] and it is tempting to correlate the observed helical magnetic flux tubes with

the alignment of sphaleron dipoles.7 Although a detailed investigation of this correlation

is beyond the scope of this paper, our results for the distribution of magnetic helicity do

indeed hint in that direction. An evaluation of the net helicity at late times and a discussion

on its persistence will be postponed to section 5.

In the previous figures, the closed string-like structure of the helicity and magnetic field

appears much more clearly that in the Gaussian random field initial condition at mti = 5.

To quantify the string-like character, we have analyzed the following quantity:

Hl(r0) =
1

l3

∫

l(r0)
dx3|~h(x)| , (4.4)

where ~h(x) denotes the helicity density and the integration is on a box of length l, centered

at a point r0 at the center of one of the strings. Figure 6 shows the l-dependence of l2Hl(r0),

averaged over several configurations. The figure is intended to show the one-dimensional

character of the distribution in accordance to our string picture. In that case, l2 Hl(r0)

should be l-independent in contrast with the l2-behaviour characteristic of an isotropic

distribution. Both regimes are clearly observed in the figure. The stringy behaviour is

displayed up to ml ∼ 10, beyond which the plot shows how the data tends nicely to a

straight line of slope equal to 2. This is to be expected once the box is big enough to

7As shown in refs. [88, 89], there is indeed a well known connection between sphalerons and electroweak

Z-strings (see also [90]).
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Figure 7: Top Left: Locus of points with twice the magnetic energy density | ~B(x)|2, above 0.01 m4.

Top Right: Locus of points with twice the electric energy density | ~E(x)|2 above 0.01 m4. Bottom:

The distribution of W± charge density, tracking the magnetic field lines. Pink and blue areas

represent negative and positive charge densities respectively. Data correspond to mt = 15, for

m
H

= 2m
W

.

contain several strings. This leads to an estimate of the string separation of m
H
l ∼ 14,

which is a significant fraction of the total length of the box.

4.3 Charge lumps around magnetic field lines

Up to now we have focused on the distribution of magnetic and Z-boson fields, but there

is important additional information on the nature of the primordial plasma during these

stages of preheating. Note that our initial conditions provide a source for charged W -

currents and a non-trivial charge density. It turns out that there is charge separation at

the initial stage. Positive and negative charges are clustered into separate lumps which

track the magnetic field lines. Figures 7 and 8 show this effect at mt = 15 and mt = 10,

respectively. Note that there is a strong correlation between the magnetic field lines and

the distribution of charges of opposite sign around them. The effect is seen particularly

clear at early times, mt = 10, where the magnetic flux tubes are well defined, and there are

fewer of them. The charge separation is consistent with the effect that would be produced

by a combination of the drift currents induced by gradient and curvature effects from the
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Figure 8: Left: Locus of points with magnetic field density | ~B(~x)|2 above 0.01 m4. Right: The

2-dimensional W -charge distribution localized in lumps of opposite sign facing each other. Note

that the location of the charge lumps is strongly correlated with the magnetic field flux tubes.

These figures correspond to early times, mt = 10, for m
H

= 3m
W

.

magnetic field. The electric field is also strongly correlated with the location of the charge

lumps, as expected. This charge separation might be responsible for the very slow screening

observed for the longitudinal electric field, which will be discussed in the next section.

The plasma generated during the first stages of evolution is, as we have shown, some-

what different from standard MHD plasmas (composed mainly of protons and electrons,

together with photons). Here, long range string-like structures are observed in the elec-

tromagnetic fields, and opposite W -charges cluster in large regions of space inducing non-

trivial electric fields. It is expected that these charge lumps will eventually disintegrate

when the W -fields decay into light fermions (quarks and leptons), which travel at the speed

of light and diffuse the charge, leading at late times to a standard MHD plasma.

5. Late time evolution

In order to claim a mechanism for cosmological magnetogenesis, the essential question is

whether the amplitude and correlation length of the generated fields are enough to seed

the large scale magnetic fields observed today. In this section we will present evidence

that a significant fraction of long range helical magnetic fields remains after EW symmetry

breaking and is even amplified at later times, a period in which kinetic turbulence has been

observed [93, 82]. As we will see below, our estimate for the amplitude of the magnetic

field seed gives a fraction ∼ 10−2 of the total energy density at the EW scale. This could

be enough to seed the cluster and supercluster values without the need for a dynamo

mechanism.

More difficult is to address the issue of whether the magnetic field spectrum experiences

inverse cascade, i.e. transference of energy from high to low momentum modes [29]–[34].

Inverse cascade is required to make the coherence length of the magnetic field grow (almost)

as fast as the horizon until the time of photon decoupling. Our approach does not allow

to extrapolate the time evolution for sufficiently long times. Nevertheless, we will provide

– 19 –



J
H
E
P
0
7
(
2
0
0
8
)
0
4
3

 0.001

 0.01

 0.1

 1

 10

 10  100

χ

mt

χH

χZ
Higgs

 0.001

 0.01

 0.1

 1

 10

 10  100

χ

mt

χH

χZ

 0.001

 0.01

 0.1

 1

 10

 10  100

χ

mt

χH

χZ

Figure 9: We display the time evolution of the helical susceptibilities for the magnetic field (with

fit tα) and the Z-boson field (with fit tβ). The latter is rescaled by tan4 θW to match the initial

electromagnetic helicity. Top left is for m
H
/m

W
= 2, averaged over 80 configurations, with α =

0.7(1) and β = −0.27(4). Top right is for m
H
/m

W
= 4.65, averaged over 80 configurations, with

α = 0.3(1) and β = −0.33(5). Bottom is for m
H
/m

W
= 3, averaged over 200 configurations, with

α = 0.8(1) and β = −0.82(4). All data correspond to ma = 0.42 and pmin = 0.15 m. The top left

figure also shows the time evolution of the Higgs mean to illustrate the time when SSB takes place.

some evidence that inverse cascade might be at work. However, additional work is required

to analyze if it can be sustained for a sufficiently long time. This might require a full

magnetohydrodynamics treatment of the time evolution for which our set up will provide

an initial condition.

5.1 Magnetic helicity and electromagnetic energy densities

We will first analyze in detail how electromagnetic fields evolve in time, paying particular

attention to the evolution of the magnetic field helicity long after SSB.

As mentioned above, the relevant quantity for helicity in the absence of CP violation

is the helical susceptibility χH . Its time evolution, for different values of the m
H
/m

W
ratio,

is displayed in figure 9. At the same time we display the helical susceptibility of the Z

boson magnetic field, rescaled by tan4 θW to make it agree with the initial electromagnetic

helicity, see discussion after eq. (4.3). The late time behaviour, after mt ∼ 60, gives further

support to the Vachaspati-Cornwall’s conjecture. It corroborates that, while the Z boson

helicity is damped in time,8 the magnetic helicity is preserved and even increases with a

power law dependence in time given by tα with α= 0.7(1), 0.8(1), 0.3(1) for m
H
/m

W
=

2, 3 and 4.65 respectively. The corresponding helical susceptibilities at mt = 100 are

8This is in agreement with the expectation that networks of Z-strings are not stable below the EW

phase transition [91, 92].
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Figure 10: We display the log-log plot of the time evolution of the electric (transverse and longitu-

dinal) and magnetic energy densities. The exponents of the power law fits are: Transverse electric

field: 0.350(1); Magnetic field: 0.330(1) and Longitudinal electric field: −0.234(2). For m
H

= 3 m
W

,

ma = 0.42 and pmin = 0.15 m, averaged over 200 configurations.

0.11(2), 0.26(1), 0.12(2) m3. Note that the model with m
H

= 3m
W

is more efficient than

the others in generating helicity at late times. This suggests a non monotonic dependence

of the helicity on the Higgs to W mass ratio, a feature also observed in the generation of

Chern-Simons number [78, 77]. In the remaining of this section we will focus on results for

this particular value of the mass ratio. Comments upon the dependence on m
H
/m

W
are

deferred to section 6.2.

The late time evolution of the integrated magnetic, longitudinal and transverse electric

energies, for m
H

= 3m
W

is presented in figure 10. A large fraction of the electromagnetic

fields generated after SSB is preserved by the time evolution. From mt ∼ 60 onwards, the

transverse energy densities increase with time, again with a power law dependence: tα, with

α = 0.350(1) and 0.330(1) for electric and magnetic energy densities respectively. At these

late times, transverse electromagnetic fields are composed of an admixture of radiation and

long range seed fields. In section 5.2 we will see how to separate these two components

by analyzing the electromagnetic field power spectra. Note also that there is a significant

fraction of longitudinal electric fields, even at the later stages of the evolution. As already

mentioned, the slow screening of the longitudinal component of the electric field is tied to

the presence of large charged lumps around magnetic field lines, see figures 7 and 8, which

persist even at late times.

5.2 Electromagnetic field spectrum

To investigate whether inverse cascade is active during the late time evolution we have an-

alyzed the electromagnetic Fourier spectrum. Figures 11 and 12 display the time evolution

of 〈k2| ~E(k)|2〉/V and 〈k2| ~B(k)|2〉/V, where ~E(k) and ~B(k) are the Fourier components of

the electromagnetic fields and V is the physical volume. The most remarkable feature in
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Figure 11: We plot 〈k2| ~E(k)|2〉/V vs k, averaged over 150 configurations. The lines represent fits

to the radiation and seed field electromagnetic components according to eqs. (5.3), (5.5) respectively.

Results are presented at mt = 105, 145, 185 and 265. In all cases m
H

= 3m
W

, ma = 0.42 and

pmin = 0.15 m.

the spectrum is the peak at small momenta that develops with time, which is distinctly

separated from the high momentum component. This behaviour suggests that the spec-

trum contains two uncorrelated distributions which describe respectively electromagnetic

radiation and the long range electric and magnetic seed fields. Following this indication,

we have performed fits to the spectrum where this separation is made explicit:

~F (k) = ~F seed(k) + ~F rad(k) (5.1)

with ~F = ~E or ~B. For the expectation values of the electric and magnetic correlators we

obtain accordingly:

〈| ~E(k)|2〉 = 〈| ~Eseed(k)|2〉 + 〈| ~Erad(k)|2〉 (5.2)

〈| ~B(k)|2〉 = 〈| ~Bseed(k)|2〉 + 〈| ~Brad(k)|2〉

In the remaining of this section we will describe these two components, starting with

the electromagnetic radiation and ending with the infrared component which describes the

magnetic field seed.
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Figure 12: The same as in figure 11 but for the magnetic component: 〈k2| ~B(k)|2〉/V .

5.2.1 Electromagnetic radiation

The radiation component dominates the electromagnetic energy density, its contribution

being a factor of 5-10 larger than the one coming from seed fields. Its profile is very well

described by:

1

V 〈| ~Erad(k)|2〉 =
2wE

eβ(wE−µE) − 1
(5.3)

1

V 〈| ~Brad(k)|2〉 =
2k

eβ(wB−µB) − 1
,

with wE(B) =
√

k2 + m2
E(B) and parameters given in table 2. As illustrated in figures 11

and 12, this distribution fits very well the high momentum part of the spectrum but

fails in reproducing the low momentum peak. Eq. (5.3) represents free massive thermal

radiation with non zero chemical potential at temperatures slightly rising with time, which

we interpret as an effect induced by the plasma of the W -fields.

Similar information can be extracted from the distribution of local values of the norm of

the transverse electric and magnetic fields. For free photons this should follow a Maxwellian

distribution (see appendix C):

P (B) =

√

2

π

(

3

〈B2〉

)3/2

B2 e
− 3B2

2〈B2〉 , . (5.4)
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mt TE/m mE/m µE/m TB/m mB/m µB/m

105 0.32(1) 0.77(1) 0.61(1) 0.32(1) 0.66(1) 0.60(1)

125 0.33(1) 0.74(1) 0.58(1) 0.33(1) 0.61(2) 0.57(2)

145 0.34(1) 0.75(1) 0.58(1) 0.33(1) 0.60(2) 0.56(2)

165 0.34(1) 0.76(2) 0.59(1) 0.34(1) 0.61(2) 0.57(2)

185 0.34(1) 0.82(1) 0.63(1) 0.34(1) 0.65(2) 0.60(2)

205 0.35(1) 0.84(1) 0.64(1) 0.34(1) 0.64(2) 0.59(2)

245 0.35(1) 0.93(1) 0.68(1) 0.35(1) 0.64(1) 0.59(2)

265 0.36(1) 0.93(1) 0.67(1) 0.35(1) 0.65(2) 0.59(2)

Table 2: Parameters of the fit to the high momentum part of the transverse electric and magnetic

spectra in eq. (5.3), for m
H

= 3m
W

, ma = 0.42 and pmin = 0.15 m. Errors in parenthesis combine

both systematic and statistical effects.
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Figure 13: We show the time evolution of the distribution of magnetic field norms. Left: For

m
H

= 3m
W

we display the log of P (B)/B2 vs B2/B2
max (i.e. normalized to the value at the peak of

the distribution) . Right: For m
H

= 3m
W

we compare the initial distribution of the local magnitude

of the magnetic field at mt = 5 with the one obtained at mt = 265, the latter fitted to a Maxwellian

distribution. The fit to the mt = 5 data is described in appendix D.

where B = | ~B(~x)|. Our data does indeed reproduce this behaviour at late times. In fig-

ure 13 we display the time evolution of the distribution of magnetic field norms, starting

from mt = 5. Although initially the distribution differs significantly from the Maxwellian

one, it is approached as time evolves and photons thermalise. There is, however, a sys-

tematic mismatch when we fit the tail of the Maxwellian distribution, even at large values

of mt. This signals again a deviation from free radiation, like the one observed in the low

momentum part of the magnetic and electric spectra. It is in this deviation where the

contribution of the seed magnetic fields reside.

5.2.2 Electric and magnetic seeds

We turn now to the analysis of the infrared part of the spectrum, which is the relevant one
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mt T̂E/m m̂E/m µ̂E/m k̂0
E/m

105 0.11(1) 0.33(5) 0.30 (4) 0.29(1)

125 0.13(1) 0.24(4) 0.22(3) 0.29(1)

145 0.14(1) 0.21(5) 0.18(3) 0.30(1)

165 0.13(1) 0.25(5) 0.23(3) 0.29(1)

185 0.09(2) 0.49(8) 0.48(6) 0.27(1)

205 0.11(1) 0.36(6) 0.35(3) 0.29(1)

225 0.10(2) 0.39(10) 0.38(3) 0.28(1)

245 0.11(1) 0.37(7) 0.35(3) 0.30(1)

265 0.10(1) 0.45(7) 0.44(4) 0.28(1)

Table 3: Parameters of the fit to the low momentum part of the transverse electric spectrum in

eq. (5.5), for m
H

= 3m
W

, ma = 0.42 and pmin = 0.15 m.

mt T̂B/m m̂B/m µ̂B/m k̂0
B/m

105 0.11(1) 0.32(7) 0.30(3) 0.29(1)

125 0.13(1) 0.24(7) 0.21(4) 0.31(1)

145 0.13(1) 0.24(6) 0.22(3) 0.29(1)

165 0.13(1) 0.27(6) 0.23(4) 0.29(1)

185 0.13(2) 0.18(10) 0.16(8) 0.32(3)

205 0.11(1) 0.31(7) 0.29(4) 0.30(1)

225 0.11(1) 0.26(5) 0.25(4) 0.31(1)

245 0.10(1) 0.37(9) 0.36(2) 0.29(1)

265 0.11(2) 0.33(9) 0.32(3) 0.30(1)

Table 4: Parameters of the fit to the low momentum part of the magnetic spectrum in eq. (5.5).

For m
H

= 3m
W

, ma = 0.42 and pmin = 0.15 m.

for the generation of the LSMF seed field. This low momentum part has been fitted to:

1

V 〈| ~Eseed(k)|2〉 =
2k

eβ̂E(ŵE−µ̂E) − 1
, (5.5)

1

V 〈| ~Bseed(k)|2〉 =
2k

eβ̂B(ŵB−µ̂B) − 1
,

with ŵE(B) =
√

(k − k0
E(B))

2 + m̂2
E(B) and parameters given in tables 3, 4. This could

represent again massive radiation at non-zero chemical potential if it were not for the

peculiar shift k0 in the frequency ŵ. We interpret the value of k0 ∼ 0.3m as a characteristic

momentum scale of the long range electromagnetic fields.

A quantitative estimate of the energy density and correlation length of the seed electro-

magnetic fields can be obtained from our fits to the low momentum part of the spectrum.
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mt 〈ρE
seed〉(×102) mξE 〈ρB

seed〉(×102) mξB

105 0.62(5) 25.3(1) 0.58(3) 25.7(6)

125 0.73(2) 25.2(1) 0.61(1) 24.5(9)

145 0.76(4) 24.8(9) 0.72(2) 24.8(3)

165 0.76(4) 26.0(10) 0.77(1) 25.4(6)

185 0.83(1) 27.6(1) 0.79(2) 26.0(10)

205 0.89(2) 27.7(2) 0.79(6) 27.2(5)

225 0.91(5) 27.9(5) 0.87(1) 28.0(5)

245 1.06(9) 27.6(4) 0.88(1) 28.1(2)

265 1.12(7) 27.9(2) 0.92(2) 28.4(7)

Table 5: Fraction of total energy and correlation length of the seed electromagnetic fields. They are

both derived from the infrared spectrum as described in eqs. (5.6) and (5.7). The results are obtained

by averaging (over 150 configurations) the values obtained for pmin = 0.15 m and pmin = 0.125 m,

with errors reflecting the dispersion between them. Data correspond to m
H

= 3m
W

, ma = 0.42.

The mean energy density is computed from the integral of the seed field spectrum as

〈ρF
seed〉 =

1

2V
∑

~k

|~F seed(k)|2
V , (5.6)

with F = E(B). The correlation length, ξE(B), is extracted from

ξ =
2π

k̄
, with k̄2 =

∑

~k
k2 |~F seed(k)|2

∑

~k
|~F seed(k)|2

. (5.7)

Table 5 and figure 14 summarise our results. We have tested finite volume independence by

comparing two different physical volumes: pmin = 0.125m and pmin = 0.15m. The numbers

in table 5 come from an average of the results obtained at these two physical volumes, with

errors given by the dispersion between them.

We obtain a magnetic seed whose mean energy density increases linearly with time.

Within the time ranges we have analysed, its fraction to the total comes out to be of

order ∼ 10−2. Assuming the magnetic field expands as radiation, this would give magnetic

fields today of order 0.5µG, which are in the range of the observed ones in galaxies, and

even in clusters of galaxies, where no-extra amplification through a dynamo mechanisms

is expected.

Concerning the correlation length, it is difficult to make a definitive statement about

the presence of inverse cascade, given the small time scales we can explore with our numer-

ical simulation. Nevertheless, within the time span we have analyzed, our results clearly

show a linear increase of the magnetic correlation length with time (see figure 14). This

result is robust under changes of pmin and lattice spacing. The observed growth is described

by mξB(t) = 20.1(4)+0.033(2)mt, giving at mt = 265 a characteristic length scale for seed

magnetic fields of order mξB(mt = 265) ∼ 30(1). This is much larger than the thermal cor-

relation length, mξthermal ∼ 10, and represents a significant fraction of the physical volume.
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, ma = 0.42.

The results are obtained by averaging the values obtained for pmin = 0.15 m and pmin = 0.125 m, with

bands representing the dispersion in the errors. The fits are ρB
seed

/ρ0 = 0.0035(5)+2.3(3)×10−5mt

and mξB = 20.1(4) + 0.033(2)mt respectively.
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Figure 15: We show the dependence with ml of the three spatial averages (5.8)−(5.10), for

mt = 245. The lines are extracted from our fits to the infrared and radiation parts of the spectrum.

Note that the fall-off at large distances is just a volume effect.

It also implies a considerable increase from the initial value at mt = 5, obtained from the

initial spectrum to be mξB(mt = 5) ∼ 17. From these results we can safely conclude that

the time evolution has succeeded in amplifying the correlation length of the magnetic seed

generated at SSB. Nevertheless, a more detailed study, including plasma effects, would be

required to determine whether ξ will be further amplified at late times.

In addition to the direct analysis of the spectrum we have also followed an alternative

strategy to separate both the magnitude and the scale of the magnetic remnant from

the radiation bath. A common way to do this, which has been extensively used in the

literature, is through the computation of several spatial averages of the electromagnetic

fields. Following ref. [28], we introduce the following averages:

• A line average:

B(1)(l) =
1

l

∫

C

~B · d~x , (5.8)

with C a straight line of length l.
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• The average magnetic flux over a surface of area l2:

B(2)(l) =
1

l2

∫

S

~B · d~S , (5.9)

• A volume average:

~B(3)(l) =
1

l3

∫

S

~Bd3x . (5.10)

As discussed in ref. [28], the spatial and statistical averages 〈B2
(i)(l)〉 can be easily computed

in terms of the spectra of the fields. For instance, the line average for a volume V is given

by:

〈B2
(1)(l)〉 =

1

V
∑

~k

|Bk|2
V W 2(k1, l) (5.11)

with

W (ki, l) =
2 sin(kil/2)

kil
. (5.12)

Analogous expressions can be found for the other two quantities. The advantage of these

averages is that they filter out the high momentum part of the spectrum and allow to

recover, at large l, information about the low momentum modes. We have checked that

our fits to the spectrum correctly reproduce the spatial averages. This is illustrated in

figure 15, where we present results for the three averages at mt = 245 compared with the

predictions obtained from our fits to the spectrum. The quality of the agreement can be

considered very good given that the continuum lines are directly obtained from the fits to

the spectrum (eqs. (5.3), (5.5) and tables 2–4), and not as a result of a fit to the spatial

averages.

To summarize, we have found evidence of the presence of a long range helical magnetic

field, whose amplitude and correlation length are linearly increasing with time. This is

accompanied by the growth of a similar long range electric field. The fate of these electro-

magnetic field depends on the subsequent evolution of the plasma which is not addressable

within our classical approximation and would require a magnetohydrodynamics treatment

including the effects of fermion fields. Our results for the power spectrum of the seed fields

can be used as initial conditions for a MHD treatment as the one developed in ref. [31].

6. Dependence on methodological and model parameters

In this section we study the (in-)sensitivity of our results to the lattice and finite volume

artefacts. We conclude that all our qualitative results are unaffected by both types of

approximations. Furthermore, we estimate the size of the systematic errors induced by

these cut-offs. The lattice artefacts, though sizable, follow the expected O(a2) dependence

allowing an extrapolation of the most relevant quantities to the continuum limit.

We also analyze the dependence of our magnetic field production mechanism on the

Higgs to W -boson mass ratio m
H
/m

W
. It follows from our scenario that, initially, the

helical susceptibility χH is independent of the Higgs self-coupling. At later times however,

we observe a non-monotonic dependence upon the mass ratio, which is maximal at our

intermediate value m
H
/m

W
= 3.
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Figure 16: Comparison of the fraction of total energy carried by electric (transverse and longitudi-

nal) and magnetic fields. Top left: for two different values of the minimum momentum: pmin = 0.1

and 0.15 for fixed ma = 0.65. Top Right and down: 3 different lattice spacings ma= 0.65, 0.52,0.42,

for the longitudinal, transverse and magnetic components of the energy. The lines are the extrap-

olation of the results to the continuum a → 0 limit. For m
H

= 2m
W

which, from the point of view

of lattice artefacts, is the worst case situation.

6.1 Lattice and finite volume artefacts

In order to determine the size of the errors introduced by our numerical approach, we have

performed simulations at different values of the physical volume and of the spatial and

temporal lattice spacings. The list of simulation parameters is given in table 1. The selec-

tion of values implies a delicate compromise among different factors. As shown in ref. [76],

to avoid important finite volume effects, we need lattices with momentum discretization

pmin = 2π/L ≤ 0.15m. On the other hand, concerning lattice artefacts, we have seen in

ref. [77] that cut-off independence of certain particular quantities (as the Chern-Simons

number) requires m
W

a ≤ 0.3. Most of our lattices satisfy both requirements.

In figures 16 and 17 we present results exhibiting the lattice and finite volume depen-

dence of the electromagnetic energy densities and of the magnetic helicity. They correspond

to the most disfavourable case of m
H

= 2m
W

. No noticeable dependence on the volume

is appreciated. Lattice spacing artefacts are somewhat stronger but do not change the

general pattern of behaviour. To analyse this effect in more detail, we display in figure 18

the a2 dependence of the electromagnetic field energy densities and Z-boson susceptibility
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0.65, 0, 52, 0.42 and N = 64, 80, 100. Right: Temporal lattice spacing dependence of the magnetic

susceptibility for mat = 0.05, 0.025.

at various times. In all cases the results are consistent with the expected quadratic depen-

dence. This allows the extrapolation of the results to the continuum limit, displayed as a

continuous line in figures 16 and 17. The right-hand side of the last figure shows that for

the case of the magnetic susceptibility the values obtained for the different lattice spacings

are compatible within statistical errors. Nonetheless, assuming that the lattice spacing

dependence depends smoothly on time, we can obtain an extrapolation to the continuum

limit lying approximately 5% above the values obtained for the smaller spacing.

With respect to finite size effects, long range quantities are expected to be the most

affected. Thus, it is essential to test that the low momentum part of the magnetic power

spectrum is not biased by finite volume artefacts. In figure 19 we present results for

pmin = 0.125m and 0.15m. The agreement is very good for the ratio m
H
/m

W
= 3 and

preserves the same quality for the other 2 values of the mH to mW mass ratios that we

have studied.

6.2 The Higgs to W boson mass ratio

Most of the results presented in the previous sections correspond to a Higgs to W -mass

ratio of 3. Qualitatively the picture remains the same for the other two ratios analyzed:

m
H

= 2m
W

and m
H

= 4.65m
W

. In figure 20 we compare the electromagnetic energy

densities and helical susceptibility as a function of time for different values of the ratio

m
H
/m

W
. We have chosen here not to normalize the energy densities to the total one, in

order to exhibit the independence of the initial magnitude of the electromagnetic fields

and helical susceptibility on the value of Higgs self-coupling λ, which also determines the

mass ratio. Other features of the initial configuration such as string lengths and widths

are also λ-independent, and depend only on the mass parameter M that fixes the Higgs

Gaussian random field (see appendix D). This λ-independence is preserved in the first

Higgs oscillation but lost afterwards, once non-linearities and the presence of the gauge

fields modifies the dynamics. At late times equipartition would indicate that the total

fraction of energy density carried by the electromagnetic field would again become λ-
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Figure 18: Continuum extrapolation of the magnetic, transverse electric, longitudinal electric

and Z-boson susceptibility. For m
H

= 2m
W

and mt = 95, 145, 190, and mt = 60, 190 for the

susceptibility.

independent. Since ρ0 = m4/4λ, the fraction of energy densities in units of m4 should tend

to behave as 1/λ at late times. This is indeed the tendency observed in the data.

7. Conclusions

In this paper we have analyzed the production of primordial magnetic fields in a model

of low-scale EW hybrid inflation. Some partial aspects of our study were anticipated

in ref. [81]. For that purpose we have studied, with the help of lattice non-perturbative

techniques, the preheating and early reheating periods after the end of a inflationary period.

Our work includes, for the first time, the full Standard Model, SU(2) ⊗ U(1), gauge degrees

of freedom. The period of low-scale inflation which sets the initial conditions of our work

could be brief. We do not need the full 60 e-folds that are necessary to account for the

CMB anisotropies. All that is needed is a period of thermal inflation at the EW scale

which would cool down the universe during at least 10 e-folds, and set the stage for a cold

(quantum) EW transition. The metric fluctuations responsible for large scale structure

could be produced at the primordial (high energy scale) inflation. This secondary stage

only redshifts scales by another e10 factor, but is irrelevant for horizon size fluctuations

today, while is enough to erase all relativistic and non-relativistic species. This scenario

was first proposed in ref. [73] and has recently been considered in ref. [71].
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Figure 19: We plot 〈k2|B(k)|2〉/V vs k for the magnetic component of the electromagnetic energy.

A comparison is made between results at pmin = 0.125 m and pmin = 0.15 m. Results are presented

at mt = 105 (Left) and 265 (Right). For m
H

= 3m
W

and ma = 0.52.

The main results of our work can be summarized in the following three observations.

First, this set up provides a concrete realization of the mechanism proposed by Vachas-

pati [35] and Cornwall [39], by which inhomogeneities of the Higgs field phases act as

sources for the generation of magnetic fields and − this is essential − with non-trivial

helicity. To the best of our knowledge this is the first time that this mechanism has been

observed in a fully non-perturbative set-up. Second, the generated magnetic field would

have, when red-shifted until today, an amplitude of ∼ 0.5µG. This is enough to explain the

values of magnetic fields observed in clusters, while those in galaxies would require a small

amount of enhancement via the usual dynamo mechanism. Third, the correlation length

of the generated magnetic field grows linearly with time within the time span we have an-

alyzed. For mH = 3mW we find mξB ∼ 0.03mt, as shown in figure 14. This linear growth

seems to be sustained by the non-trivial dynamics of the plasma made of W -bosons and

could be expected to hold until the decay of the Higgs, the W and the Z bosons into light

fermions. Our approach does not allow us to extrapolate these results from then onwards.

Nevertheless, the helical nature of the generated magnetic field warrants that the effect of

the primordial plasma would be that of preserving and even amplifying the magnitude of

the helicity and the magnetic field correlation length [31]–[34].

We have distinguished three different stages in the evolution after inflation ends: tachy-

onic growth of the Higgs-field low momentum modes, symmetry breaking and late time

evolution after SSB. In what follows we will summarize the main features characterizing

each of these stages.

During the first tachyonic stage, non-linearities in the Higgs potential and gauge fields

can be neglected and the quantum evolution of the system can be exactly solved. Quantum

fluctuations of the Higgs-field infrared modes are described by a multi-component Gaussian

random field. As described in detail in section 4, magnetic fields are already present at

this stage with a non-trivial helical susceptibility directly related to the winding number

susceptibility of the Higgs as a Gaussian random field. Although SU(2)⊗ U(1) gauge
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Figure 20: Time evolution of the energy densities, in m4 units, in the: Top Left: longitudinal

electric field; Top Right: transverse electric field; Bottom Left: magnetic field. Bottom Right: χH

in m3 units. Energy densities are not normalized to the total energy density in order to emphasize

λ independence in the initial stages of the evolution.

fields are very small at the end of inflation, the magnetic fields arise through the presence

of inhomogeneities in the Higgs field phase, thus corroborating Vachaspati’s conjecture.

Along this period, the spatial distribution of the magnetic field is determined by that of

the Higgs field, a feature that is maintained and even enhanced during the second stage of

evolution corresponding to symmetry breaking.

The period of SSB arises via the formation of bubbles in the Higgs field norm that

expand with time and collide with each other. Magnetic fields are squeezed by the expan-

sion in string-like structures localized in the regions between bubbles (see figure 4). This

stringy structure is reproduced both in the helicity density and in the Z boson magnetic

field density. We have estimated a characteristic string separation during this period of

m
H
l ∼ 14. Linked to the appearance of the magnetic strings we find a non trivial distribu-

tion of electric fields and W -boson charge and current densities. Most remarkably, we see a

very non-trivial distribution of the charge density with the formation of extended charged

clusters which track the position of the magnetic string. This separation of unequal charges

induces electric fields in the plasma. We observe both transverse and longitudinal electric

fields also correlated with the string locations. The clusters persist for a very long time

and, as a consequence, we observe a very slow screening of the longitudinal electric field
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with time, see figure 10. We conjecture that these electric fields will be erased as soon

as the plasma of W -bosons decays into light fermions moving close to the speed of light,

which will neutralize much faster than the heavy W -charges.

The third stage of evolution after SSB is characterized by a very slow approach to

thermalisation. To claim a feasible mechanism for magnetogenesis we have to guarantee

that the initial helical magnetic seed is not removed with time. We have shown in section 5

that the magnitude of the helical susceptibility grows with time with a power-law behaviour,

χH ∝ tα, with α = 0.7(1), 0.8(1) and 0.3(1) for m
H
/m

W
= 2, 3, 4.65 respectively. At the

same time the Z-boson helical susceptibility decays also with a power law dependence with

time. We have observed that the magnitude of the generated magnetic susceptibility does

not depend monotonically on the Higgs- to W -mass ratio. Of the values we have analyzed,

mH/mW = 3 is the one that generates larger helical fields.

In order to extract the late time behaviour of the amplitude and correlation length of

the magnetic field seed, we have performed a detailed analysis of the magnetic field Fourier

spectrum for m
H
/m

W
= 3. It shows two well differentiated and uncorrelated components:

an ultraviolet radiation sector and an infrared peak whose amplitude increases with time

(see figure 12). The radiation tail is well described by a Bose-Einstein distribution of

massive photons with a non-trivial chemical potential at temperatures T ∼ 0.23m
H

slowly

rising with time. The low momentum part of the spectrum carries a fraction f ∼ 10−2

of the total energy density. As mentioned before, both its amplitude as its correlation

length are linearly growing with time within the analyzed time span, showing indications

of an inverse cascade towards the infrared. However, our time scales are not long enough to

demonstrate that inverse cascade will be sustained at even later times when the composition

of the plasma changes significantly. For the moment we can, nevertheless, rely on the results

in refs. [31]–[34] which show that helical fields are optimally amplified by MHD evolution.

In summary, hybrid preheating at the EW scale could be responsible for the observed

magnetic fields associated with large scale structures like galaxies and clusters of galaxies.

Both the magnitude and correlation length could be derived from the highly non-linear

and non-perturbative evolution after EW symmetry breaking. Our analysis provides a

concrete realization of the mechanism proposed by Vachaspati and Cornwall many years

ago. This primordial plasma enters a regime in which helical magnetic field lines experience

an inverse cascade towards larger scales. We observe how both their energy density and

correlation length grow linearly with time. Showing that these magnetic fields evolve as

described in the introduction until photon decoupling would require a detailed follow up

with MHD simulations with initial conditions provided by our work. This result would

support our proposal that the helical magnetic fields produced at the cold EW transition

are responsible for the observed magnetic fields in galaxies and clusters of galaxies.
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A. The lattice equations of motion

To solve the classical equations of motion we discretise them on a lattice preserving full

gauge invariance. In this appendix we introduce the lattice notation and derive the lattice

equations of motion for our particular problem.

As usual, the lattice points are labeled by a vector of integers n = (n0, ~n) in terms of

which the space-time positions are given by: x = (n0 at, ~n a), with at and a the temporal

and spatial lattice spacings related by κ = at/a. The adimensional lattice scalar fields are

derived from the continuum ones as: ΦL(n) = aΦ(x/a) and χL(n) = aχ(x/a). In what

follows we will omit the subscript L, since all fields will be lattice fields unless explicitly

indicated. The Higgs field is expanded as: Φ(n) =
∑

α φα(n) σ̄α, in the basis of 2 × 2

SU(2) matrices: σ̄ ≡ (1l, i~τ ), with τa the Pauli matrices and φα real coefficients. The

Standard Model Higgs doublet is obtained trough the projection: ϕ = Φ (1, 0)T . Gauge

fields are given in terms of link variables: Uµ(n) and Bµ(n) for SU(2) and hypercharge

fields respectively. They are both 2× 2 SU(2) matrices, with the peculiarity that Bµ(n) is

diagonal. Expanded in the σ̄ basis, they read:

Uµ(n) =
∑

α=0,...,3

uα
µ(n) σ̄α , Bµ(n) =

∑

α=0,3

bα
µ(n) σ̄α , (A.1)

with uα
µ and bα

µ real coefficients. The continuum limit of the gauge links is as usual:

Uµ(n) ∼ e
i
2

aµgWAa
µτa , (A.2)

Bµ(n) ∼ e
i
2

aµgYBµτ3 ,

where there is no implicit sum in the µ index and where the vector aν ≡ {at, a, a, a}.
With the previous conventions, the usual U(1) hypercharge transformation is imple-

mented by acting on the Φ field with right multiplication by a diagonal SU(2) matrix:

ϕ′(n) = eiα(n) ϕ(n) −→ Φ′(n) = Φ(n) eiα(n)τ3 . (A.3)

The complete SU(2)⊗ U(1) gauge transformation for the Higgs field then reads:

Φ(n) → Ω(n)Φ(n)Λ(n) , (A.4)
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where Λ(n) = exp(iα(n)τ3) represents the U(1) gauge transformation and Ω(n) =
∑

α Ωα(n) σ̄α the SU(2) one. The corresponding transformations of the gauge links are:

Uµ(n) → Ω(n)Uµ(n)Ω†(n + µ) , (A.5)

Bµ(n) → Λ(n)Bµ(n)Λ†(n + µ) ,

where µ̂ is the unit vector in the µ direction.

It is useful to introduce a lattice covariant derivative operator defined by:

(DµΦ)(n) = Uµ(n)Φ(n + µ̂)Bµ(n) − Φ(n) , (A.6)

and its adjoint:

(D̄µΦ)(n) = U †
µ(n − µ̂)Φ(n − µ̂)B†

µ(n − µ̂) − Φ(n) . (A.7)

In addition we introduce forward and backward ordinary lattice derivatives given by:

(∆µf)(n) = f(n + µ̂) − f(n) , (A.8)

(∆̄µf)(n) = f(n − µ̂) − f(n) . (A.9)

The discretization of the pure gauge part of the Lagrangian is done in terms of the

plaquette fields:

Pµν(n) = Uµ(n)Uν(n + µ̂)U †(n + ν̂)U †(n) , (A.10)

P ab
µν(n) = Bµ(n)Bν(n + µ̂)B†(n + ν̂)B†(n) ,

with the transformation properties:

Pµν(n) → Ω(n)Pµν(n)Ω†(n) , (A.11)

P ab
µν(n) → Λ(n)P ab

µν(n)Λ†(n) = P ab
µν(n) .

The pure gauge discretized Lagrangian then reads:

LY(n) =
2

κg2
Y

∑

i

Tr [1 − P ab
0i (n)] − κ

g2
Y

∑

i6=j

Tr [1 − P ab
ij (n)] , (A.12)

LSU(2)(n) =
2

κg2
W

∑

i

Tr [1 − P0i(n)] − κ

g2
W

∑

i6=j

Tr [1 − Pij(n)] . (A.13)

And the complete lattice Lagrangian is:

LL(n) = LY(n) + LSU(2)(n) + Tr
{

(DµΦ)†(n) (DµΦ)(n)
}

(A.14)

+
1

2
∆µχ(n)∆µχ(n) − κV (Φ(n), χ(n)) ,

where all the derivatives are lattice derivatives and all matter fields are adimensional lattice

fields. To simplify notation we have introduced the lattice metric tensor ηµν with non-zero
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elements: η00 = 1/κ and ηii = −κ, i = 1, 2, 3. This allows to raise four-dimensional indices

in the usual way. The potential, V (Φ(n), χ(n)), has the explicit form:

V (Φ(n), χ(n)) = − M2
L Tr{Φ†(n)Φ(n)} + λ

(

Tr{Φ†(n)Φ(n)}
)2

(A.15)

+
µ2

L

2
χ2(n) + g2χ2(n)Tr{Φ†(n)Φ(n)} ,

with ML = am, µL = aµ, and where g and λ are the same coupling constants appearing

in the continuum Lagrangian.

We have now all the necessary ingredients to write the lattice equations of motion.

They are derived by imposing that the variation of the lattice action with respect to each

of the fields in the Lagrangian vanishes. We obtain:

(∆µ∆̄µχ)(n) = κ
{

µ2
L + 2g2 Tr[Φ†(n)Φ(n)]

}

χ(n) , (A.16)

(DµD̄µΦ)(n) = κ
{

− M2
L + g2 χ2(n) + 2λTr[Φ†(n)Φ(n)]

}

Φ(n),

(D̄A
ν Gµν)(n) = κJµ(n) ,

(D̄Y
ν Fµν)(n) = κJµ

Y(n) ,

with the currents given by:

Jµ(n) =
igW

2

[

Φ(n) (DµΦ)†(n) − (DµΦ)(n)Φ†(n)
]

, (A.17)

Jµ
Y (n) =

igY

2

[

(DµΦ)†(n)Φ(n) − Φ†(n) (DµΦ)(n)
]

3
σ̄3/2 ,

where the sub-index 3 in the second equation denotes the component, of the term between

brackets, along σ̄3/2. The covariant derivatives, (DµΦ)(n) and (D̄µΦ)(n), are given by

eqs. (A.6), (A.7). We have also introduced two additional covariant derivative operators:

DA
µ and DY

µ , obtained from the standard one by setting either the hypercharge or the SU(2)

gauge links to the identity, i.e.:

(DA
µ Φ)(n) = Uµ(n)Φ(n + µ̂) − Φ(n) , (A.18)

(DY
µ Φ)(n) = Φ(n + µ̂)Bµ(n) − Φ(n) .

The corresponding expressions for the plaquette fields are:

(DA
µ Pρν)(n) = Uµ(n)Pρν(n + µ̂)U †

µ(n) − Pρν(n) , (A.19)

(DY
µ P ab

ρν )(n) = P ab
ρν (n + µ̂) − P ab

ρν (n) .

The tensors Gµν and Fµν , appearing in the equations of motion, are defined from the

traceless part of the plaquettes by:

Fµν =
i

2gY
[P ab

µν(n) − P ab
νµ(n)] , (A.20)

Gµν =
i

2gW
[Pµν(n) − Pνµ(n)] .
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In order to simplify the problem of solving the lattice equations of motion it is conve-

nient to fix the temporal gauge, realized on the lattice by fixing the temporal component

of the hypercharge and SU(2) links to unity: B0(n) = 1l , U0(n) = 1l. In this gauge, the

lattice equations of motion can be used to solve for the fields at time n0 +2 in terms of the

fields at times n0 and n0 + 1. The lattice equations associated to the gauge fixed degrees

of freedom become constraint equations analogous to the continuum Gauss law:

(D̄A
k G0k)(n) = κJ0(n) , (A.21)

(D̄Y
k F 0k)(n) = κJ0

Y (n) .

As proved in ref. [77], these constraints are preserved by the lattice evolution. It is hence

sufficient to impose them on the initial conditions. The way this is done for our numerical

simulations follows exactly the procedure described in ref. [77] for SU(2) where we refer

the reader for further details.

B. Lattice version of the Maxwell equations

In this appendix we present the derivation of the lattice version of the Maxwell equations

used in order to define the W charge and current densities. Starting from the continuum

expressions:

~∇ ~E(x) = ρ(x) , ~∇~ (x) + ∂0 ρ(x) = 0 , (B.1)

~∇ ~B(x) = 0 ,

~∇× ~E(x) + ∂0
~B(x) = 0 ,

~∇× ~B(x) − ∂0
~E(x) = ~ (x) .

we look for a discretization that preserves the Bianchi identities.

In section 3.2, we have defined the electromagnetic lattice field strength, F γ
µν(n), in

terms of clover averaged Z and B field strengths. The clover average of a space-time tensor,

like F0i(n), is given by:

〈F0i(n)〉clov ≡ 1

2

(

F0i(n) + F0i(n − 0̂)
)

, (B.2)

while for a spatial tensor we have:

〈Fij(n)〉clov ≡ 1

4

(

Fij(n) + Fij(n − ı̂) + Fij(n − ̂) + Fij(n − ı̂ − ̂)
)

. (B.3)

From them we extract the lattice electric and magnetic fields:

Ei(n) =
1

e aat
〈Fi0(n)〉clov , Bi(n) =

1

2 e a2
ǫijk 〈Fjk(n)〉clov . (B.4)

The electromagnetic ~E and ~B fields, defined above, verify the following Bianchi identities:

~∆I · ~B(n) = 0 , ~∆I × ~E(n) +
1

κ
∆0

~B(n) = 0 , (B.5)
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where we have introduced an improved lattice derivative given by:

(∆I
µf)(n) =

1

2

(

f(n + µ̂) − f(n − µ̂)
)

. (B.6)

We now define accordingly the longitudinal and transverse components of the electromag-

netic fields. The projection is done in momentum space with Fourier transformed fields:

~E(~k) =

∫

d3~x ~E(~x) e−i~k·~x , ~B(~k) =

∫

d3~x ~B(~x) e−i~k·~x , (B.7)

with lattice momenta: ki = 2πni/(Ns a), ni ∈ ZZ. Transverse components, ~At, of a vector
~A, are defined such that q̂ · ~At = 0, where:

~q =
1

2
(~v − ~v∗), with vi =

1

a
(e−ikia − 1) , (B.8)

and with q̂ the unit vector in the direction of ~q.

The electromagnetic, Fourier transformed, charge and current densities are computed

through:

ρ (~k) = q̂ · ~E(~k) , (B.9)

~ (~k) = q̂ × ~B(~k) − 1

at
∆̄0

~E(~k) . (B.10)

C. Thermal radiation

In the present appendix, we prove the relation:

〈| ~B(~x)|2n〉 = 〈: | ~B(~x)|2n :〉Q(T ) , (C.1)

where the left side of the equality is calculated using the Maxwellian classical distribution:

〈| ~B|2n〉 =

√

2

π

(

3

〈B2〉

)3/2 ∫ ∞

0
dBB2n+2e

− B2

2
3 〈B2〉 , (C.2)

whereas the right hand side is calculated using the thermal quantum distribution in the

canonical formalism. Thus,

〈: | ~B(~x)|2n :〉Q(T ) ≡
Tr(: | ~B(~x)|2n : ρ)

Tr(ρ)
. (C.3)

where ρ is the canonical distribution density matrix:

ρ = e−
H
T . (C.4)

and : O : denotes normal ordering of the operator O. By performing the integral in eq. C.2

we obtain the classical thermal averages:

〈| ~B(~x)|2n〉 =
(2n + 1)!!

3n
(〈| ~B(~x)|2〉)n. (C.5)
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Our goal is then to compute the thermal quantum averages

〈: ( ~B(~x) · ~B(~x))n :〉Q(T )

on the canonical distribution at temperature T. The only terms of the normal-ordered

operator that contribute to the expectation values must be diagonal in momentum space.

If we single out that part we obtain

: ( ~B(~x) · ~B(~x))n :=

n
∏

i=1

(

∑

ai

∫

d~kia
†
ai

(~ki)aai(
~ki)

)

Ga1...an(~k1, . . . ~kn) + X , (C.6)

where X denotes the part that does not contribute to the expectation value and G is a a

coefficient to be specified later.

Next we can evaluate the thermal average of the operator part, which can be expressed

as a product of n(ki, ai), the mean number of photons of momenta ~ki and polarization ai.

Hence, we arrive at

n
∏

i=1

(

∑

ai

∫

d~ki n(ki, ai)

)

Ga1...an(~k1, . . . ~kn) .

Now we should unfold the form of the coefficient G. It is given by

1

n!

∏

i

(

vl2i−1
(~ki, ai)vl2i

(~ki, ai)
)

∑

σ∈S2n

δlσ(1)lσ(2)
· · · δlσ(2n−1)lσ(2n)

,

where the sum is over all the permutations of the 2n indices, and

vi(~k, a) =
1

(2π)3/2
√

2k
(~k × ~ǫa(~k))i .

The sum over all permutations follows from taking all creation annihilation operators as

distinguishable and assigning them to each of the 2n magnetic fields. Nonetheless, since

we are integrating over all values of momenta one has to divide by n! to eliminate double-

counting.

Now we will introduce the matrix M , given by

Mij ≡
∑

a

∫

d~k n(k, a)vi(~k, a)vj(~k, a) = λδij . (C.7)

The left-hand side is a consequence of rotational invariance. Substituting in the previous

formulas we get

1

n!
Ml1l2 · · ·Ml2n−1l2n

∑

σ∈S2n

δlσ(1)lσ(2)
· · · δlσ(2n−1)lσ(2n)

.

The sum over permutations can be factored as follows

∑

σ∈S2n

δlσ(1)lσ(2)
· · · δlσ(2n−1)lσ(2n)

= 2nn!
∑

pairings

∏

pair

δ(pair) ,
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where a pairing is an arrangement of the 2n indices into pairs (equivalently a permutation

made entirely of 2-cycles). The rest of the calculation is very much like a calculation to

nth order in perturbation theory in a model with 2-leg vertices given by the M matrix and

a propagator given by the identity matrix. All diagrams are now characterized by nl, the

number of l-cycles (loops), where l runs from 1 to n. Applying the standard Feynman rules

one arrives at

4nn!
∏

i

(

∑

nl

TrMnl

(2l)nlnl!

)

.

The factors 2l and nl! provide the order of the symmetry group of the diagram. The 2l term

is associated with cyclic permutations of the vertices and to a change in orientation. In the

previous formula, the sum over nl runs over all possible integers subject to the constraint
∑

l lnl = n. One can actually perform this sum. Setting M = λI our expression becomes

proportional to λn. Thus, we can eliminate the constraint on the nl by summing over n.

The constrained sum can be obtained from the unconstrained one by selecting the term

proportional to λn. Hence,

4nn!
∏

l

(

∑

nl

(

Dλl

2l

)nl 1

nl!

)

= 4nn! exp

{

D/2
∑

l

λl

l

}

= 4nn!(1 − λ)−D/2

where D is the space dimension, which is 3 in our case. This quantity is the generating

function of all the quantum averages. Differentiating n times with respect to λ we extract

the n-th term that we were looking for:

〈: ( ~B(~x) · ~B(~x))n :〉Q(T ) = (2λ)n(2n + 1)!! (C.8)

The result for D = λ = 1, given by (2n)!
n! , serves to crosscheck the result. From the previous

equation (C.8) we get λ = (1/6)〈: |B|2(v) :〉Q(T ) allowing to re-express eq. (C.8) in the

form of eq. (C.5).

To conclude we give the expression of 〈: |B(~x)|2 :〉Q(T ) in terms of the temperature.

Taking the trace of eq. (C.7) we obtain:

〈: |B|2(x) :〉Q(T ) =

∫

d~k
1

(2π)3
2 k n(k, a) .

Taking into account n(k, a) = (ek/T − 1)−1, we can perform the integration:

1

π2

∫

dkk3 1

(ek/T − 1)
=

1

π2

∫

dkk3
∞
∑

n=1

−(e−k/T )n =
6

π2
T 4

∞
∑

n=1

1

n4
.

The sum over n is the known ζ(4) = π4/90, leading to:

1

2
〈: |B|2(x) :〉Q(T ) =

π2

30
T 4
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D. Gaussian random fields

In this appendix we revisit the predictions of the Gaussian random field model. As ex-

plained in section 3 of the paper, the initial conditions produced by the quantum evolution

shortly after inflation ends are of this type. Furthermore, this distribution seeds the gen-

eration of magnetic fields and Chern-Simons number. There is an extensive literature (see

refs. [94]–[97]) on Gaussian random fields and some of the analytic predictions have been

included in our previous papers. However, here we are dealing with multicomponent fields

and some of the predictions and methodology do not hold in this case. Besides, there are

many more relevant observables directly related to the Physics issues addressed in this

paper. To explore these matters within this paper, we have felt satisfied with its numerical

study. Since gauge fields and non-linearities do not play a role at this stage, we have prof-

ited to increase statistics and test systematic errors at a low computational cost. These

results can then be used as a reference to compare with our full-theoretical ones.

Our Gaussian random field is homogeneous and isotropic. The power spectrum was

set to match the one produced by the quantum evolution of the Higgs field coupled to a

linearly time-dependent inflaton and neglecting the Higgs self-interaction. The details and

nomenclature are explained in our previous paper [76]. We recall that the Higgs field has

4 real components which are independent random variables with identical power spectrum

which, for simplicity, is fitted to a simple form which reproduces nicely its shape:

P (k, t) =
1

2m2π2
k2(A(t)e−B(t) k2/m2

+ 1)Θ(
√

2V tm − k) (D.1)

where V is the inflaton velocity at the end of inflation, A and B are time-dependent

parameters and Θ is the Heaviside step function.

It is interesting to be able to trace the dependence of our results on the different

parameters that enter our model. Fortunately, this dependence is greatly encoded in two

scales that characterize the Gaussian random field. One scale fixes the magnitude of the

Higgs field. We choose this scale to be the dispersion σ of the field at one spatial point.

Notice that the physical scale v, giving the expectation value of the Higgs field in the true

vacuum, has not yet entered the scene, since the Gaussian random field is generated before

the self-interaction of the Higgs field affects the evolution. It is precisely the comparison

between σ(t) and v that must be taken into account in fixing the range of values of the

initial times ti for the subsequent non-linear classical evolution of the system.

In addition, the other scale of the problem is a length scale ξ0 associated to the Gaussian

random field as follows:
1

ξ2
0

≡
∫

dk
k P (k, t)k2

∫

dk
k P (k, t)

(D.2)

With our choice of velocity V = 0.024 at mti = 5 we obtain σ = 0.139 v, for m
H

= 3m
W

.

Thus, we are safely in the region where non-linearities are still small. On the other hand

mξ0 = 3.09, which determines the adequate ranges of the ultraviolet and infrared cut-off

of our numerical procedure. At mti = 6.5 these numbers have changed to σ = 0.204 v and

mξ0 = 2.95 respectively. This observation allows us to give results in a way that are valid

for all the values of initial times employed in this work.
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Figure 21: Left: Histogram of peak (local maxima) heights, expressed in σ(ti) units. Right:

Distribution of the the local magnetic field intensity B = | ~B(x)| in ξ0(ti) units.

In line with previous analysis, we will present our results for the density and distri-

bution of local maxima of |φ|. The density of maxima is given by 0.0140(4) ξ−3
0 . The

distribution of minimum distances among maxima can be studied directly and displays an

approximate Gaussian distribution with mean 3.1(1) ξ0 and dispersion 0.62(2) ξ0. We have

also studied the distribution of values of |φ| at the maxima, ϕ. The average height of a

peak being 1.52(4)σ. The histogram is much narrower than the one obtained for a single

component Gaussian random field, and is well-fitted to the following expression

ϕa exp

{

− ϕ2

2σ̃2

}

with a = 10.4(5) and σ̃ = 0.44(1)σ. Nicely enough the results presented are robust as one

changes the ultraviolet, infrared cut-offs and time within their safe windows (See figure 21).

Errors quoted are both statistical and systematic.

Now we turn to observables which are characteristic of multi-component Gaussian

random fields. A crucial role is played by the topological susceptibility χ which is obtained

by dividing the mean value of the winding number square by the volume. We obtain

1.55(10) × 10−3ξ−3
0 . We can also compute the initial magnetic field distribution. Notice

that, as explained in the paper, despite the fact that SU(2)×U(1) gauge fields are zero

at this stage, our formulas induce a non-zero Z field and a non-zero magnetic field which

is proportional to it. Computing this magnetic field at each point of space we obtain a

distribution which is well fitted by a formula

P (B) = Bb exp

{

−
(

B

d1

)h1
}

+ A exp

{

−
(

B

d2

)h2
}

,

with B = | ~B(x)|, see figure 13. Our best fit values of the parameters are b = 1.89(3),

d1 ξ2
0 = 3.0(1) 10−3 , h1 = 0.368(3), d2 ξ2

0 = 2.61(2), h2 = 1.34(3) , A = 1.0(5) 10−7 . The

initial magnetic field distribution has a slower decrease at large values than the Maxwellian

distribution obtained at later times. The aforementioned universality can be tested here.

– 43 –



J
H
E
P
0
7
(
2
0
0
8
)
0
4
3

In particular, it follows that results obtained at different initial times ti should fall in the

same curve once normalised by the scales of σ and ξ0. This is clearly seen in figure 21.

We have also studied the spectrum of the magnetic field to compare it with the one

obtained once non-linearities set in. In our case the high momentum profile differs from

the thermal tail displayed at later times. Instead, the high momentum tail is well fitted by

a function

exp

{

−
(

k

b

)c}

where bξ0 = 0.01(1) and c = 0.36(4).
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[80] J. Garćıa-Bellido and D.G. Figueroa, A stochastic background of gravitational waves from

hybrid preheating, Phys. Rev. Lett. 98 (2007) 061302 [astro-ph/0701014];
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production during preheating at the electroweak scale, Phys. Rev. Lett. 100 (2008) 241301

[arXiv:0712.4263].
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